fixanddive_c.c


/*版权所有2023,Gurobi O狗万app足彩ptimization, LLC */ /*实现一个简单的MIP启发式。放松模型,根据分数性对变量进行排序,并固定最接近整数变量的25%的分数变量。重复此步骤,直到松弛是整数可行或线性不可行的。*/ #include  #include  #include  #include "gurobi_c.h" typedef struct {int index;双X;} var_t;vcomp(const void* v1, const void* v2);int main(int argc, char *argv[]) {GRBenv *env = NULL, *modelenv = NULL;GRBmodel *model = NULL;Int错误= 0; int j, iter, nfix; int numvars, numintvars, numfractional; int *intvars = NULL; int status; char vtype, *vname; double sol, obj, fixval; var_t *fractional = NULL; if (argc < 2) { fprintf(stderr, "Usage: fixanddive_c filename\n"); exit(1); } error = GRBloadenv(&env, "fixanddive.log"); if (error) goto QUIT; /* Read model */ error = GRBreadmodel(env, argv[1], &model); if (error) goto QUIT; /* Collect integer variables and relax them */ error = GRBgetintattr(model, "NumVars", &numvars); if (error) goto QUIT; error = GRBgetintattr(model, "NumIntVars", &numintvars); if (error) goto QUIT; intvars = malloc(sizeof(int) * numintvars); if (!intvars) goto QUIT; fractional = malloc(sizeof(var_t) * numintvars); if (!fractional) goto QUIT; numfractional = 0; for (j = 0; j < numvars; j++) { error = GRBgetcharattrelement(model, "VType", j, &vtype); if (error) goto QUIT; if (vtype != GRB_CONTINUOUS) { intvars[numfractional++] = j; error = GRBsetcharattrelement(model, "VType", j, GRB_CONTINUOUS); if (error) goto QUIT; } } modelenv = GRBgetenv(model); if (!modelenv) goto QUIT; error = GRBsetintparam(modelenv, "OutputFlag", 0); if (error) goto QUIT; error = GRBoptimize(model); if (error) goto QUIT; /* Perform multiple iterations. In each iteration, identify the first quartile of integer variables that are closest to an integer value in the relaxation, fix them to the nearest integer, and repeat. */ for (iter = 0; iter < 1000; ++iter) { /* create a list of fractional variables, sorted in order of increasing distance from the relaxation solution to the nearest integer value */ numfractional = 0; for (j = 0; j < numintvars; ++j) { error = GRBgetdblattrelement(model, "X", intvars[j], &sol); if (error) goto QUIT; if (fabs(sol - floor(sol + 0.5)) > 1e-5) { fractional[numfractional].index = intvars[j]; fractional[numfractional++].X = sol; } } error = GRBgetdblattr(model, "ObjVal", &obj); if (error) goto QUIT; printf("Iteration %i, obj %f, fractional %i\n", iter, obj, numfractional); if (numfractional == 0) { printf("Found feasible solution - objective %f\n", obj); break; } /* Fix the first quartile to the nearest integer value */ qsort(fractional, numfractional, sizeof(var_t), vcomp); nfix = numfractional / 4; nfix = (nfix > 1) ? nfix : 1; for (j = 0; j < nfix; ++j) { fixval = floor(fractional[j].X + 0.5); error = GRBsetdblattrelement(model, "LB", fractional[j].index, fixval); if (error) goto QUIT; error = GRBsetdblattrelement(model, "UB", fractional[j].index, fixval); if (error) goto QUIT; error = GRBgetstrattrelement(model, "VarName", fractional[j].index, &vname); if (error) goto QUIT; printf(" Fix %s to %f ( rel %f )\n", vname, fixval, fractional[j].X); } error = GRBoptimize(model); if (error) goto QUIT; /* Check optimization result */ error = GRBgetintattr(model, "Status", &status); if (error) goto QUIT; if (status != GRB_OPTIMAL) { printf("Relaxation is infeasible\n"); break; } } QUIT: /* Error reporting */ if (error) { printf("ERROR: %s\n", GRBgeterrormsg(env)); exit(1); } /* Free data */ free(intvars); free(fractional); /* Free model */ GRBfreemodel(model); /* Free environment */ GRBfreeenv(env); return 0; } int vcomp(const void* v1, const void* v2) { double sol1, sol2, frac1, frac2; sol1 = fabs(((var_t *)v1)->X); sol2 = fabs(((var_t *)v2)->X); frac1 = fabs(sol1 - floor(sol1 + 0.5)); frac2 = fabs(sol2 - floor(sol2 + 0.5)); return (frac1 < frac2) ? -1 : ((frac1 == frac2) ? 0 : 1); }